Advanced Technology Liquefiers Automated 80 and 160 Liter Capacity Helium Liquefiers

Quantum Design's Advanced Technology Liquefiers (ATL) along with its innovative Helium Recovery, Storage & Purification Systems allow you to recover the helium gas currently being lost from the normal boil off and helium transfers of your MEG and other cryogenic instruments.

Advanced Technology Liquefiers Provide:

- Easy-to-Use, Fully Automated Operation
- Portable Liquefiers for Easy Transfers
- High Liquefaction Rates; Energy Efficiency
- Self-Cleaning, Uninterrupted Service
- No Gas Cylinders Needed for Helium Transfers

ATL160

Dewar Capacity: 160 liters Liquefaction Rate: Greater than 22 liters / day* Fully Automated Touch Panel Control

ATL80 (also available)

Dewar Capacity: 80 liters Liquefaction Rate: Greater than 12 liters / day* Fully Automated Touch Panel Control Integrated Compressor

Direct Recovery - MEG

- An MEG consumes liquid helium at a low rate, but reliability of helium supply is crucial
- Serious space limitations of most MEG centers necessitates a compact liquefier solution
- Advanced automated features and high energy efficiency of ATL ideal complement for modern MEG systems
- Designed for general users Requires minimal training and is easily operated by MEG technicians
- ATL recovery systems already have been successfully installed in many MEG centers
- Quantum Design's global service network guarantees prompt technical support and onsite response when needed

ATL Recovery Systems can be customized for all MEG Centers

Direct Recovery (DR)

- $\mathsf{A}-\mathsf{ATL}$
- B ATL Compressor
- C Back Pressure Controller
- D ATL Power Distribution Unit
- X Customer MEG

Center with single or multiple MEGs Provides up to 14 liters/day in Direct Recovery mode Recover 100% normal boil off; Transfer boil off augmented with external Helium gas cylinders through *dual gas inputs*

