
Received 7 February 2025, accepted 5 May 2025, date of publication 9 May 2025, date of current version 16 May 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3568650

Disentangling High-Paced Alternating
I/O in Gaze-Based Interaction
YULIA G. SHEVTSOVA 1,2, ARTEM S. YASHIN 1, SERGEI L. SHISHKIN 1,
AND ANATOLY N. VASILYEV 1,2
1MEG Center (Center for Neurocognitive Research), Moscow State University of Psychology and Education, 123290 Moscow, Russia
2Department of Human and Animal Physiology, Lomonosov Moscow State University, 119234 Moscow, Russia

Corresponding author: Yulia G. Shevtsova (shevtsova.jg@gmail.com)

This work was supported by the Russian Science Foundation under Grant 22-19-00528.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Ethical Committee of MSUPE under Protocol No. 1, and performed in line with the Declaration of Helsinki.

ABSTRACT Gaze-based input to machines utilizes the ability of eye-gaze to serve as a user’s ‘‘output.’’
However, gaze should also support information flow in the opposite direction, namely, ‘‘input’’ to the
user’s visual system from a machine’s output. The two functions can be easily separated in some tasks,
like eye typing, but more complex scenarios typically require users to perform additional actions to avoid
misinterpreting their intent. In this study, we modeled a free-behavior interaction with rapid transitions
between visual search, decision-making, and gaze-based input operations through an engaging game called
EyeLines. When playing the game, 15 volunteers selected screen objects using a 500 ms dwell time without
additional actions for intention confirmation. By applying machine learning algorithms to gaze features and
action context information, we achieved a threefold reduction in false positives, improved the quality of in-
game decisions, and increased participant satisfaction with system ergonomics. To our knowledge, this is
the first study that demonstrates the effectiveness of machine learning applied to gaze features in enhancing
gaze-based interaction within visually challenging environments.

INDEX TERMS Gaze tracking, gaze-based selection,Midas touch, gaze dwell, eye fixation, eyemovements,
gaze features, machine learning, intention recognition, user experience.

I. INTRODUCTION
Gaze-based interaction is a technology with almost a half-
century history [1]. Its user, most typically, interacts with a
computer by gazing at certain screen objects (buttons, web
links, etc.) to select them. Gaze direction is captured by an eye
tracker, so looking at an object basically works as pointing
with a mouse cursor, and when a certain dwell time threshold
is exceeded,1 a command is issued, like when clicking the

The associate editor coordinating the review of this manuscript and

approving it for publication was Nikhil Padhi .
1In this article we will use the word dwells for the events of relatively long

stay of gaze in a certain area, which may result in gaze-sensitive interface
response when the dwell time threshold is exceeded. Such events are called
fixations in most of the literature on gaze-based interaction, but they do not
fit strict definitions of an eye fixation used in the eye movement literature.
A dwell may encompass more than one fixation and include some other kinds
of eye movement.

left mouse button. As looking at an object of interest is
natural, the use of the technology can be relatively effortless.
For decades, the technology was primarily developed to
assist paralyzed individuals, but it also can be used by
healthy persons, e.g., as a supplement to conventional input
means [1], [2], [3], [4], [5].

However, the main function of eyes is, of course, vision.
To fulfill it, our eyes constantly move and fixate to serve
our vision without conscious intention, and we are not even
aware of them [6], [7]. Unfortunately, this automatic behavior
interferes with the ability to communicate via gaze.

The problem that arises at the intersection of the visual
function of gaze direction control and the ability to use this
control for interaction enabled by gaze-sensitive computer
interfaces is called the Midas touch problem [8]: if certain
gaze behavior issues a command to a computer, this command
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will often be executed without the user’s intention, because
this gaze behavior is typically not used for intentional control.
This problem was first formulated for systems which respond
to simple gazing at an item [8], but it is inherent to any
gaze-sensitive interface that cannot reliably differentiate gaze
behavior used for interaction from any other behavior.

Many solutions for the Midas touch problem have been
proposed (see [1], [9] for review). One group of solutions
is making gaze behavior used for interaction less similar to
natural, spontaneous eye movements. This is most commonly
done by increasing the gaze dwell time threshold. Instead
of intentional dwells, special learned sequences of saccades
can be used. Another approach is to introduce additional
behaviors to highlight intentional dwells. Most basically,
this can be implemented by requiring the user to make
a saccade to a special confirmation area. Gaze dwells or
other eye movement patterns intended for interaction can
also be marked by behaviors other than eye movements,
such as blinks (typically more than one, to make the
pattern less similar to spontaneous behavior), button presses,
hand gestures (used in Apple Vision Pro), voice, and even
imaginary movements detected by a brain-computer interface
(BCI; e.g. [10], [11]). Each approach can be further enhanced
by additional modifications; one interesting recent example
was a dynamical adaptation of dwell time threshold to a
task, which took into account previous performance and
current gaze features [12]. However, existing solutions for the
Midas touch problem require additional effort from a user,
which worsens their experience and may make interaction
less fluent.

Can theMidas touch problem be solved without requesting
additional effort from the user? Intuitively, something in
gaze behavior could be different in intentionally and spon-
taneously prolonged gaze dwells. Several studies showed
that machine learning (ML) applied to gaze features can
indeed recognize an intention-for-interaction with relatively
high accuracy [13], [14], [15]. However, in these studies,
interaction with a computer was at least partly manual (e.g.,
selection by combined gaze pointing and button pressing
in [13]), so gaze patterns could be very different from pure
gaze-based interaction.

Surprisingly, ML has been applied to gaze data collected
during online gaze-based interaction without manual input
only in recent studies. Reference [16] and [17] directly
addressed the Midas touch problem, classifying gaze dwells
intentionally used for interaction (which should trigger the
selection command) and other (spontaneous) gaze dwells
which should be ignored. Reference [12], who aimed
at improving gaze-based interaction in VR, used ML to
gradually adapt the dwell time threshold. This task can
be considered as a more general version of accepting or
rejecting a dwell with fixed time threshold, because very
low/high thresholds lead to mandatory acceptance/rejection,
respectively.

These studies demonstrated the significant potential of the
ML-enhancement of gaze-based interaction. Nevertheless,

they had a number of limitations. Reference [17] tested their
algorithms only in offline simulations. Reference [16] made
online tests, but their task included visual search, i.e., the par-
ticipants had to search for a target prior to making a selection.
Finding a target during visual search is associated with longer
dwell times and stronger pupil dilations compared to looking
at non-targets [18]. Effects of this kind can account at least
for a portion of classifier performance when these or related
features are used, as in [16] study. Therefore, this study could
not model scenarios where the locations of the objects to be
selected are well known to the user, a frequent case in real-life
human-computer interaction. Most of the tasks used by [12]
for online tests also included visual search, except for a
sliding puzzle task (which was also used by [13]). In that task,
however, the visual scene was very simple and was changing
with time only slightly; consequently, the visual function of
eye movements could be only slightly employed. Compared
to many real-life situations, engagement of some participants
(or even all of them) in the task could likely be lower due to
relative simplicity of the task and its repeated use along the
experiment, and this could also affect eye movement patterns.
Finally, in the tasks used in experimental studies (including
the sliding puzzle task) the number of available alternative
selections was low, which also might lead to gaze patterns
different from real-life conditions.

Onemore problem associatedwithmodeling real-life inter-
action is that when participants are allowed to behave freely,
the ground truth can be directly obtained only through
introspection. Therefore, [12] and [13] assessed quality of
online classification using overall performance in the task
and responses to questionnaires. While the approach was
generally relevant, it could provide only rough estimation of
intention recognition quality, given the indirect relation of the
indicators to classifier performance, high variability of these
indicators’ values and relatively small sample size. Classifier
performance in these studies was directly estimated in offline
modelling of classifier operation, but this was also a rough
approximation, as gaze behavior should, most likely, change
when the classifiers are applied online.

Thus, first steps toward ML-enhancement of gaze-based
interaction were made, but experimental paradigms used to
test the proposed algorithms did not sufficiently address the
need to combine gaze use as an input tool and as a tool for
vision in visually rich and changing environments.

To test free and enganging online gaze-based interaction
in a dynamically changing environment, a gaze-controlled
game EyeLines was proposed [19], [20], [21], [22]. In this
game, a player makes moves on a game board with
colored elements, some of which are added or removed
after each move, so the visual environment is significantly
changing along all the game; a move typically can be freely
chosen from many existing variants, and players’ significant
engagement is normally observed (see a more detailed
description below). The game was used to evaluate BCI-
based selection intention recognition related to gaze dwells
in offline [19], [20], [21], [22]. and online [23] BCI modes.
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For intention recognition using only gaze features, this game
was used by [17], but without online application of the ML
algorithms. In most of these studies labelling of intentional
and spontaneous dwells wasmade based on participants’ gaze
behaviors, without requiring them to mark their decisions
explicitly (with a partial exception for the online BCI part
of the study by [23]), where participants ‘‘semi-explicitly’’
labeled incorrect selections by a repeated dwell on the same
object, thereby also cancelling selection). Labelling was still
based on additional actions, namely switching on the controls
prior to each move or by confirming a selection, in both cases
using a dwell on a designated screen ‘‘button;’’ however,
these additional actions seemed to automatize quickly and did
not distract from the main task.

In the current study, we explored ML-enhancement of
gaze-based interaction in the online mode.
Like in our previous studies, EyeLines game was used as

a testbed with features which we considered important for
relevant modeling of gaze-based interaction: (1) the need
to combine intensive use of gaze both for control and for
vision, (2) freedom of participants’ behavior, (3) implicit
labeling of intentional and spontaneous gaze dwells (not
distracting a participant from the interaction); (4) engagement
in interaction.

In addition to testingML-enhancement in the online mode,
the current study was different from our previous study of
ML-enhancement of gaze-based interaction, where EyeLines
was also used [17] in the following ways:
(1) Confirmation of selection was not used in this study in

either ML-enhanced (C—classifier-enhanced) and baseline
(D—based solely on dwell duration) modes, therefore
moves in the game could be done significantly faster and
interaction became more intensive. A somewhat different
and more sophisticated labeling protocol was developed to
solve the problem of the absence of explicit dwell type
information.

(2) In addition to the ML-based algorithm based on gaze
features (the gaze classifier), we further enhanced inten-
tion recognition with a context-based algorithm, hereafter
refferenced to as the contextual classifier. This algorithm
modified recognition of a dwell as intentional or spontaneous
based on the current game context. Adding the contextual
classifier was done to provide better approaching real-life
use of gaze-based interaction, where similar algorithms are
effectively used to improve interaction (especially, autocom-
plete and similar algorithms in gaze typing). Algorithms of
this type are increasingly used in human-machine interaction
in general [24]. We also aimed at achieving especially
fluent experience of gaze-based interaction, to explore how
gaze behavior can be modified in this case. To assess its
contribution to system performance, we also simulated gaze-
based interaction without this classifier in an offline study.

(3) Set of gaze features was improved compared to [17].
(4) To enable effective implementation of ML algorithms,

the game was re-written in Python while preserving its
game mechanics and most details of the visual appearance

and interface behavior, with some differences highlighted in
Methods.

The aim of this study was to test, in online (near real-
time) mode and in a task where users smoothly alternate
between making gaze-based actions and visual inspection,
if ML indeed enables passive differentiation of gaze dwells
used for control and spontaneous gaze dwells in a way that
improves gaze-based human-computer interaction.

We tested several hypotheses about specifc aspects of the
improvement:

H1 (control rate hypothesis): With the use of ML,
a higher command rate (effective actions per minute, eAPM)
will be observed.

H2 (efficiency hypothesis): With the use of ML, higher
rate of ball removing will be observed (i.e., more balls will be
removed from the game board per minute; we considered this
as a key measure of successful progression in the EyeLines
game).

H3 (UX hypothesis):With the use ofML, participants will
rate their gaming experience higher, and/or they will prefer
ML-enhanced interaction over the baseline interaction.

All these hypotheses were tested online for combined
application of both the gaze classifier and the contextual
classifier vs. baseline (no ML enhancement) dwell-time
based control. In addition, offline modelling was used to
assess contribution of the contextual classifier, i.e., to check
which of the classifiers was primarily responsible for the
observed results.We also explored, using data from the online
experiment and from offline simulations, various aspects
of ML-enhanced gaze-based interaction, to provide a better
understanding of how it actually worked in near real-life
conditions and how it could be further improved.

II. MATERIALS AND METHODS
A. PARTICIPANTS
17 naïve healthy volunteers (7 males, 10 females; age
25 ± 6 years, M ± SD) participated in this study.
All participants had normal or corrected-to-normal vision.
Five volunteers had previously participated in our study
where they played the EyeLines game using gaze-based
control without ML-enhancement, while the rest had no
prior experience with gaze control. All participants were
introduced to the procedure and provided informed consent.
The experimental procedures were approved by the Ethical
Committee of MSUPE (protocol . 1, dated 12.03.2015) and
were conducted in accordance with institutional and national
guidelines for research involving human participants, as well
as the Declaration of Helsinki. One of the participants was
excluded from the analysis due to poor playing, and data from
another one were lost due to technical issue. Thus, data from
a total of 15 participants were analyzed.

B. EXPERIMENTAL DESIGN
The experiment comprised two sessions conducted on
separate days, with an interval of up to two weeks between
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them. During each session, participants played the EyeLines
game. This game is similar to the conventional Lines game,
but gaze dwell time was used instead of mouse clicks
or touches to a touchscreen (see section II-C for details).
To familiarize themselves with the task, participants were
asked to practice playing the traditional Lines game using
either a mouse or a touchscreen before the first experimental
session.

On the first day, participants were introduced to the game
and gaze control techniques, while the second day focused on
performance evaluation and comparing the two game modes.
Participants showed noticeable improvement in game and/or
gaze control skills during the first session, and by the second
day, these skills had stabilized, as will be discussed in the
results section (III.B.). The sequence of game modes on the
first day was fixed to help participants become familiar with
gaze control mechanics, such as spontaneous selections. This
fixed order was necessary because the data from the baseline
mode (D) was used to adjust the classifier parameters for
the classifier-enhanced mode (C). On the second day, the
sequence of modes was randomized across participants, as
the classifier parameters had already been adjusted based on
the first day’s data. The experimental design was as follows:

• Day 1: test, D, D, D, S1, rest, C, C, C, S1, S2
• Day 2: test, D, D, D, S1, rest, C, C, C, S1, S2
or test, C, C, C, S1, rest, D, D, D, S1, S2

test: On day 1, this section involved explaining the rules
and demonstrating the game using a special mode with
a mouse. On both days, participants played the game for
3 minutes in D mode. Additionally, on day 1, they played for
3 minutes in the first mode of that day.
rest: On both days, participants rested for 5–10 min

between the two modes.
D: One game in the mode with control using only 500 ms

dwell time threshold.
C : One game in the mode with control based on dwell time

and classifier decisions.
S1: Survey regarding the perceived mode qualities.
S2: Survey regarding comparison of the two modes.
The participants were unaware of the differences between

the modes. Typical duration of sessions was 1 h 30 min on
Day 1 and 1 h 20 min on Day 2.

C. EYELINES GAME
All variants of the gaze-based control were tested on the eye-
controlled game EyeLines, designed earlier [21], [23] based
on a popular computer game Lines (with some adaptation
for gaze-based control) and implemented here in Python to
support more flexible online data processing. In EyeLines,
the player selects a colored ‘‘ball’’ randomly placed on the
game board and moves it to form lines of four or more balls
of the same color. These lines can be arranged vertically,
horizontally, or diagonally. When a line is successfully
formed, it disappears, freeing space on the board.

The scoring system awards the player 40 points for forming
a line of four balls. Longer lines result in higher scores: a

FIGURE 1. An example of the EyeLines display. The dotted areas indicate
the following: 1—the selected ball; 2, 3—empty cells where the selected
ball can be moved to complete a colored line; 4—empty cell that is
inaccessible due to the restricted diagonal move rule; 5—the ‘‘undo last
move’’ button.

line of five balls earns 100 points, six balls yield 180 points,
and seven balls—the maximum due to the board’s size—earn
280 points. A ball can only be moved if there is a path of
orthogonally adjacent empty cells between the starting and
destination cells. In EyeLines, each ‘‘ball’’ is represented as
a simple colored circle with a small dot in the center to aid
precise and stable gaze fixations.

In this study, game board size was 16.0◦
× 15.8◦ and

included a 7 × 7 grid, and each ‘‘ball’’ subtended about 1.2◦

(Fig. 1). Ball selection and moving were both made based on
dwell time threshold with or without additional decision rules
(for details, see the II.E. Classifiers section below). Unlike
in previous EyeLines versions [19], [21], [23], the selected
ball was marked by enlarging the central dot in it from 0.1◦

to 0.3◦. Also, to facilitate gaze control, participants received
visual feedback on their gaze position through a small dark
blue cross, displayed at the median of the gaze coordinates
(Fig. 1). If moving a ball to the selected cell was not possible
according to the rules, a red cross temporarily appeared in the
cell.

If a ball was selected unintentionally, participants could
deselect it by gazing at it again or by selecting a different
ball. They also had the option to cancel a completed move
(ball selection and placement) by gazing at a designated area
on the screen, located a few cells away from the top-right
corner of the playing field. Participants were instructed to
cancel a move only in cases of errors, such as incorrect ball
movement due to a wrong classifier decision, unintended
selection, or calibration issues, but not to undo an intentional
move to choose a better option.

Each game was limited to a duration of 8 minutes, though
it could end earlier if the board was filled with balls or due to
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occasional issues with eye-tracker calibration. In cases where
the game ended prematurely, additional games were offered
to ensure a total playtime of 20–24 minutes per mode. After
each game, the player’s score was displayed.

D. EYE TRACKING AND GAZE DWELL DETECTION
Eye tracking was conducted in binocular mode using the
EyeLink 1000 Plus eye tracker, with a sampling rate
of 1000 Hz. Calibration was performed before each game,
adhering to the following validation accuracy requirements
(in degrees): average < 0.5, maximum < 1.0.
The dominant eye was identified using the Miles and Porta

tests (10 participants had a dominant right eye, 5 had a
dominant left eye), and its coordinates were used for real-
time control. Real-time (online) data processingwas achieved
by collecting coordinates in batches of 20 samples using the
Resonance software system [25]. Saccades and fixationswere
identified using the EyeLink online software algorithm, with
the following criteria for saccades: acceleration > 8000◦/s2,
speed > 30◦/s, and a minimum duration of 6 ms.
Dwells were identified using a spatiotemporal criterion:

the dispersion of coordinates over 500 ms did not exceed
2.3◦ for both axes. After reaching the time threshold, a dwell
‘‘continued’’ if the following additional criteria were met:

• The spread (max–min) of coordinates in the last 500 ms
remained within 2.3◦ for OX and OY axes;

• The distance between the center of gaze X and Y
coordinate distributions in the last 500 ms and the initial
500 ms did not exceed 1.8◦.

Time threshold of 500 ms was chosen as the most
comfortable for users based on our previous study with the
EyeLines game [21].

When these conditions were not met, the current dwell
was discarded, allowing detection of the next dwell when the
dwell criteria were met again. This approach accounted for
gaze drift while preventing the repeated selection of the same
ball by maintaining gaze in one location.

The square hitbox (sensitive area) for each ball and cell
were ± 1.3◦ relative to their center, ensuring there were no
blind spots on the playing field.

During the experiment, the start time of a gaze dwell was
corrected to the first fixation start time in both modes if the
difference between these time points did not exceed 50 ms.
Otherwise, the gaze dwell was adjusted forward by 20 ms,
which was the average difference between the start of the
fixation and the dwell based on our previous experiments with
the same game.

E. CLASSIFIERS
1) CLASSIFIER APPLICATION
We first describe application of the classification algorithm
to make clear its functioning and therefore to clarify what
was the goals of classifier training, before explaining how this
training was organized.

In Mode C, for each dwell falling within the hitbox of a
ball, a classifier decided whether the ball had to be selected

FIGURE 2. Classifier decisions based on thresholding the probability of
assigning gaze dwells to the intentional class.

FIGURE 3. Dwell to selection translation based on 2-stage decision
pipeline of in mode C.

(or deselected, if it has been already been selected). Selection
of an empty cell for moving a ball into it or the undo button
did not employ the classifier and relied solely on 500 ms gaze
dwells.

The classification algorithm consisted of two components:
a gaze classifier, which used features of gaze micro-
behaviors, and a contextual classifier, employing features
describing ball position in the context of other balls’
arrangement on the board. The predicted probabilities from
both classifiers (Pgaze, Pctx) were averaged, resulting in
the following classifier prediction (estimated probability of
intention to select, P):

P =
1
2
(Pgaze + Pctx) (1)

The classifier decision was based on thresholds of P value:
a gaze dwell was deemed ‘‘spontaneous’’ (below threshold 1),
‘‘intentional’’ (above threshold 2) or ‘‘uncertain’’ (between
threshold 1 and 2) (for graphical explanation see Fig. 2).

Thresholds were individually adjusted for each participant
and each session (for day 1: based on Mode D data on day
1; for day 2: based on day 1 data from both modes), ensuring
that the proportion of uncertain gaze dwells remained below
30% of all classifier decisions. This optimization aimed to
achieve the highest balanced accuracy while minimizing the
false positive rate (FPR) on the first day and the false negative
rate (FNR) on the second day. The switch to FNR on the
second day was due to participants’ feedback gathered on the
first day.
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Fig. 3 further clarifies the decision-making scheme. Gaze
dwells classified as intentional led to the selection of a
ball. Gaze dwells classified as spontaneous did not result
in any action. For uncertain gaze dwells, a ball was only
selected after a prolonged dwell—an uninterrupted dwell
with a duration of 800 ms (on the first day) or 700 ms (on
the second day). If the dwell was interrupted before reaching
this threshold, the ball was not selected.

2) CLASSIFIER TRAINING
The classifiers utilized the SVM RBF model. On the first
day, gaze and contextual classifiers were trained on data from
21 participants of our previous EyeLines experiment [17],
where gaze-based control was mostly like in the B mode
in the current study. Classes were individually balanced by
removing random dwells from the class where their number
was highest. For threshold tuning, the group classifier was
tested on data collected in the D mode on the first day, and
the selected threshold was used online in mode C further on
the first day.

On the second day, individual gaze and contextual
classifiers were constructed using data from the first day. For
testing the individual classifiers and setting their thresholds,
the dataset was split into two parts—1/3 dwells were used for
feature selection (for the gaze classifier) and model hyper-
parameter tuning, and 2/3 dwells entered cross-validation
performance assessment. Classes were balanced randomly
beforehand. The model with the tuned hyperparameters was
then trained, using the selected features, on all class-balanced
data from the participant, and used online in mode C on the
second day.

Training procedure was the same for both days. All
features were standardized. Hyperparameters were tuned
using sklearn.model_selection.RandomizedSearchCV with
the following adjustable parameters [n = 3, C =(0.05..10),
gamma =(0.005, 1), niter = 50, score=’balanced_accuracy’].
The seven most significant features for the gaze classifier
were selected using the RFE algorithm (Recursive Feature
Elimination, sklearn.feature_selection.RFE), with feature
ranking performed on the SVM Linear model.

3) FEATURES FOR THE GAZE CLASSIFIER
The features used for the gaze classifier (see Table 1) were
derived from raw eye-tracker data and gaze positions relative
to the gameboard elements.

Features marked with ∗ were calculated in overlapping
50–ms windows. e.g., 0–500, 50–500, . . . , 450–500ms, while
those marked with † were calculated in non-overlapping
windows, e.g., 0–50, 50–100, . . . , 450–500 ms

Features based on pupil data (C1), binocular data (D1), and
initial fixation (A1) were not used in the online experiment
but were considered for offline simulations. A total of 84 gaze
features were analyzed in this study; however, only 7 features,
selected using the Recursive Feature Elimination (RFE)
algorithm, were used in each model of the gaze classifier.

TABLE 1. Features used for classification.

The most frequently used features across participants are
presented in Table 5.

4) FEATURES FOR THE CONTEXTUAL CLASSIFIER
The features of the contextual classifier were the properties
of ball position in the context of other balls’ arrangement
on the game board. We manually selected features which
could influence the probability that the ball will be chosen
by the player for the current move, based on the analysis of
a total of 50,000 moves from games in a previous study (not
published yet) with the same EyeLines variant. The features
were categorized into two main types: those indicating the
potential for forming same-colored lines (either by creating a
line or by freeing up space for a ball(s) that could complete a
line) and those describing the overall visibility and mobility
of the balls on the game board.

The first category included the change in the number of
lines of same-colored balls with all possiblemovements of the
selected ball. We examined the change in the number of
lines of the following types: bb, bbb, bbbb, bbbbb, bbbbbb,
bbbbbbb, b0b, b0bb, bb0b, bb0bb, b0bbb, bbb0b (where ‘b’
represents balls of the selected ball’s color, and ‘0’ represents
an empty cell). For example, if moving a ball would change
a line of two same-colored balls into a line of four balls, the
features would be: bb = −1, bbbb = 1, and all others = 0.
To assess the potential of a move for freeing up space for

line construction, we considered the change in the number
of unblocked lines of three balls: c0cc, ccc0 (where ‘c’
represents balls of a different color from the selected ball, and
‘0’ represents an empty cell). For instance, if moving a ball
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freed up space for an existing line of three balls, the feature
ccc0 = 1.
Features in the second category, related to the overall

visibility and mobility of the balls, included: the number of
empty cells to which a ball could be moved (noting that the
presence of other balls could block paths to certain cells),
the Euclidean distance of the selected ball from the center
of the board, the total number of balls of that color on
the board, the overall number of balls on the board, the
percentage of balls of that color relative to all balls on the
board, and the change in the size of the cluster of empty cells
(if moving a ball frees up a path, the cluster size increases).

In total, 21 features were used for the contextual
classifier—14 from the first category, and the remaining
7 from the second.

5) APPROXIMATE GROUND TRUTH LABELLING
To maintain motivation and engagement in the partici-
pants, we used the EyeLines game paradigm intentionally
designed [21], [23] without constrains specific to an exper-
iment. This game rules and gameplay mostly follow its
predecessor, the Lines game, so that the players freely choose
each move. As often happens in free behavior experiments,
however, this comes at a price that the ground truth
for dwell classes, intentional (voluntary) vs. unintentional
(spontaneous), could not be approached directly. We did
not ask the participants to label selections as intentional
or spontaneous, as this could strongly distract them from
the game and made their gaze behavior different from
normal gaze interaction. However, we could approximately
determine the true classes for gaze dwells based on the
participant’s actions. The primary criterion was if the selected
ball was moved (intentional dwells) or not (spontaneous
dwells). Additional labeling criteria included canceling a
move after a ball was moved, deselecting a ball with a
repeated gaze dwell, and attempting to move a ball to a
prohibited area on the game board (a ‘‘no path’’ situation,
where the move violated the rules). In a small portion of cases
(approximately 2%; see Section III-A), it was not possible
to determine the class of a given gaze dwell, and these
instances were excluded from the further analysis of classifier
performance. A detailed summary of the labeling rules can be
found in Table 2.

Note that this procedure is inherently approximate and
may introduce label noise. Typical mislabeling errors include
tagging an intentional selection as spontaneous when a
participant aborts a planned move at the last moment,
or conversely, labeling a spontaneous selection as intentional
when a participant happened to move a ball that was selected
without prior intent. This noise affected both training and
testing data (online and offline), potentially reducing classi-
fier discriminability and degrading performancemetrics (e.g.,
overall accuracy). We estimate that data from inexperienced
participants (Day 1) contained higher levels of label noise;
as participants became more familiar with the task (see II-

A), their action repertoire stabilized and more consistently
conformed to our labeling criteria.

F. PERFORMANCE ASSESSMENT
1) CLASSIFIER PERFORMANCE
Several metrics were used to assess classification perfor-
mance, including balanced accuracy, area under the curve of
receiver operating characteristics (ROC AUC), and the P4
metric proposed by [26]. The latter was employed due to the
balanced approach to accounting different types of errors,
which is important when tuning classifier in imbalanced
classes scenario. The P4 metric is the harmonic mean of
recall (true positive rate—TPR), specificity (true negative
rate—TNR), precision (positive predictive value—PPV) and
negative predictive value (NPV):

P4 =
4

1
TPR +

1
TNR +

1
PPV +

1
NPV

(2)

where TPR =
TP

TP+FN ; TNR =
TN

TN+FP ; FPR =
FP

FP+TP ;

FNR =
FN

FN+TP
We also introduced a modified version of P4 to account

for the varying impact of false positives (FP) on gameplay.
In this weighted metric (P4w), the number of FPs in the
formula was adjusted based on their actual impact on game
performance. Not all false positives were noticed by users;
according to the questionnaires, on average, participants
only noticed about one-fifth of unintended selections, and
not all of these had significant consequences for gameplay.
Unintentionally selected balls disrupted gameplay only when
they led to unintended ball movements (assessed by counting
the use of the undo button followed by moving another ball)
or when users had to spend extra time deselecting the ball
with a repeated gaze dwell. As a result, the FPw variable was
calculated as the total number of move cancellations and ball
deselections (corresponding to cases . 8 and . 12 from
Table 2):

FPw = ncancelled + ndeselected (3)

After substituting the formulas for TPR, TNR, FPR, and
FNR into (2), the P4 formula becomes more convenient for
incorporating the modified version of FP, allowing P4w to be
calculated as follows:

P4w =
4 × TP × TN

4 × TP × TN+ (TP + TN) × (FN + FPw)
(4)

To evaluate classifier performance during offline simula-
tions, a special coefficient was calculated for each participant
based on the ratio of FPw to FP during online performance:

coef = FPw/FP (5)

This coefficient was used to convert the number of FPs
from the offline simulation into those that would have
resulted in negative gameplay consequences. Therefore,
in offline simulations, FPw was calculated as:

FPw= FP × coef (6)
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TABLE 2. Dwell Labelling∗ Based on Observed Action Sequences.

2) EFFICIENCY OF THE GAZE-BASED CONTROL
Two major aspects of control efficiency were considered:
the effectiveness of playing the game and the efficiency of
performing gaze-based actions. The objective of the game
was to form lines of same-colored balls, which would result
in their removal, clearing the game field. The game continued
until the end of the allotted time, with the goal of scoring
the highest number of points by removing as many balls
as possible. EyeLines players generally found it unpleasant
when the game ended before the 8-minute limit, as this
usually resulted in a lower score, which was a key indicator
of success for participants.

Two performance metrics were used to assess these
aspects:

• Game playing time (as a percentage of the game’s 8-
minute duration, averaged across all games);

• Rate of ball removal (in balls per minute).

In both modes, D and C balls could be selected without
the user’s intention due to classifier’s false positives (FP).
The rate of unintentional ball selection was calculated as
a ratio of the number of TP to the number of FP. For
example, TP/FP = 3 means that on average every 4th ball is
selected unintentionally. (Note that the ground truth could be

approached only approximately, so such computations also
lead to approximate values).

As mentioned above, only unintentional selections that
resulted in gameplay consequences hindered the gameplay,
forcing participants to take additional actions, such as
deselecting balls or canceling moves. Therefore, we also
calculated the ratio of true positives (TP) to weighted
false positives (FPw), which is inversely proportional to the
frequency of issues participants encountered during the game
due to false positives (FP).

False negatives (FN) appeared in gaze control mode with
a classifier (Mode C) when gaze dwells were mistakenly
classified as spontaneous, making it impossible to select the
ball. The ratio of TP to FN showed how rarely a ball cannot
be selected (TP/FN = 10 means that every 11th ball cannot
be selected).

As both types of errors hindered performance and subjec-
tive assessment of interaction, a unified metric, Mean Time
Between Failures (MTBF) was used, together with MTBFw
that accounted not for all FPs but only for FPw:

MTBF =
TP

FP + FN
(7)
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MTBFw =
TP

FPw+FN
(8)

3) QUESTIONNAIRES
We used questionnaires to evaluate the users’ experience
with gaze-based control while playing Eyelines. Participants
completed a questionnaire after each condition (presented
as condition 1 and 2) on both the first and second days
of the experiment. Additionally, a final questionnaire was
provided at the end of each day to compare the two modes.
The questionnaires were printed on paper, and participants
filled them out with a pen. For the open-ended questions,
participants verbally provided their answers, which the
experimenter typed on a computer.

In the post-condition questionnaires, participants rated
various control features of the control mode, including the
rate of ball selection and the frequency of unintentional ball
selections or movements. Additionally, participants provided
feedback through open-ended comments.

Meanwhile, our primary focus was on the final question-
naires, where participants compared the two control modes.
We aimed to determine whether users found the controls
in the C condition superior to those in the D condition.
In these final questionnaires, participants rated different
mode properties or expressed their agreement with various
statements using continuous scales. The length of the scales
equaled 100 mm. For each scale, participants placed two
marks, one for each mode (either mode 1 or mode 2). Below,
we provide a table with the exact wording of the questionnaire
items and the labels used for the scale anchors (see Table 3).
At the end of the questionnaire, participants provided open-
ended comments on the differences between the modes and
explained their preferences for one mode over the other.

III. RESULTS
A. GAZE-CONTROL EFFICIENCY
The eye tracker calibration quality, validated at the beginning
of each game, averaged 0.26 ± 0.07 degrees across 9 points,
with a maximum deviation of 0.54 ± 0.15 degrees for the
dominant eye. No link to game performance was detected in
relation to calibration quality metrics.

Group statistics for gaze dwell classes labelled according
to the rules from the Table 2 showed a predominance of
intentional dwells (see Table 4). The proportion of this
dwell class varied among participants, ranging from 25% to
50%. The proportion of intentional gaze dwells increased
significantly on the second day (Student’s t-test, t(14) =

−3.525, p = 0.003), likely due to improved gameplay skills
and enhanced gaze control efficiency.

A two-way ANOVA with repeated measures was con-
ducted to evaluate the effects of Day and Mode on the rate of
ball removal. The results indicated a significant main effect
for Day only: F(1,14) = 15.53, p = 0.0015, highlighting the
clear progression of game skills across days (Fig. 4). This
progression is also evident when the removal rate is plotted
against the game number within a day (Fig. 5). Consequently,

TABLE 3. Contents of the final questionnaires.

TABLE 4. Average number of Dwells of each class per participant.

to compare the efficiency of gaze control between modes,
we used game performance metrics solely from the results
of the second day.

The ball removal and movement rates did not differ
between D and C modes on Day 2 (Student’s t-test: for
removal rate t(14)= 0.05, p= 0.96 and for move rate t(14)=
1.08, p=0.30). However, Mode C allowed participants to play
longer (i.e., fewer games ended prematurely due to board
fillingwith balls,Wilcoxon test:W(13)= −73.0, p= 0.0078)
and perform less actions to remove the same number of balls
(W(15) = 110.0, p = 0.0006) (Fig. 6).
In terms of error frequency during gaze control, Mode

C shows a higher ratio of true positives (TP) to both false
positives (FP) and false positives weighted (FPw) compared
to Mode D (Wilcoxon test, TP/FP: W(15) = −120.0,
p = 0.00006; TP/FPw: W(15) = −118.0, p = 0.0001),
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FIGURE 4. Group average (N = 15) rate of ball movement (left) and
removal (right) across days and game modes. Note that the rate of ball
removal directly characterizes perceived success in the game (game
scores).

FIGURE 5. Group average (N = 15) participant-normalized rate of ball
removal as a function of game number. The gray line represents the
overall data, while the data for Day 2 are split into Mode D and Mode C,
shown by dark and light green lines, respectively. The shaded areas on
the graphs represent the interquartile range (IQR).

FIGURE 6. Group average (N = 15) for total game time (left; higher values
indicate better performance) and the number of actions per ball removed
(right; lower values indicate better performance) across game modes on
Day 2. Asterisks indicate statistical significance: ∗∗p < 0.01, ∗ ∗ ∗p < 0.001
(Wilcoxon test).

as illustrated in Fig. 7. Although false negatives (FN) caused
by incorrect classifier decisions contribute to errors, Mode
C remains superior to Mode D when all FP are considered
(MTBF: W(15) = −120.0, p = 0.00006). However, if only
FPw are considered, the addition of FN results in an equal
number of failures across both gaze-control modes (MTBFw:
W(15) = 2.0, p = 0.98).

FIGURE 7. Group average (N = 15) ratio of true positives to false
negatives (TP/FN), true positives to false positives with and without
weighing (TP/FPw, TP/FP), mean time between failures: conventional
variant (MTBF) and with weighed FP (MTBFw) for experimental modes D
and C on Day 2. The scores represent the logarithmic values of each
variable. Asterisks indicate statistical significance: ∗ ∗ ∗p < 0.001
(Wilcoxon test).

B. QUESTIONNAIRES
Analysis of the questionnaires revealed that only one out
of the 10 questions (Fig. 8) showed significant differences
across days (Q6, Wilcoxon test: W(11) = 66.0 p = 0.001).
The statistical significance of the differences between the two
modes was assessed using a permutation test (n = 10,000
permutations, with the t-test as the statistical criterion, df =

14) conducted separately for each day. On the first day,
participants slightly preferred Mode D when asked about
the influence of game duration on their well-being and
effectiveness. However, by the second day, their preferences
had shifted, with Mode C receiving higher ratings (Q6, p =

0.02).
Mode D was perceived as slower than Mode C (Q1: day 1,

p = 0.002; day 2, p = 0.016). In terms of the other questions,
eitherModeCwas favored, or no significant preferenceswere
expressed at the group level. According to the questionnaires,
Mode C was perceived as less annoying on both days (Q5:
day 1, p = 0.03; day 2, p = 0.04). Additionally, on the first
day, participants reported fewer unintended selections (Q2,
p = 0.006) and unintended moves (Q3, p = 0.009) in Mode
C.

C. CLASSIFIER PERFORMANCE
1) FEATURE IMPORTANCE
The feature analysis revealed that the most reliable indicator
was the distance from the center of the object (B3, see
Fig. 9, Table 5), with a characteristic monotonic increase
up to 500 ms. This was likely because, during intentional
dwells, participants tried to keep their gaze centered on
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FIGURE 8. The results of comparing the two modes based on
questionnaire responses across days. The values were obtained by
subtracting the scores for Mode D from those for Mode C. The axes for
each question were adjusted so that when Mode C was rated more
favorably than Mode D, the values appear on the right side of the plot.
Asterisks indicate a statistically significant difference from zero: ∗p <

0.05, ∗∗p < 0.01 (permutation test).

the element, whereas during spontaneous dwells, their gaze
tended to drift away from the center toward the next point of
interest. Gaze dispersion, assessed by various microsaccade
metrics (A2–A3), as well as dispersion (B1) and spread
(B2) of the gaze point coordinates, were also informative for
distinguishing between intentional and spontaneous dwells,
with the peak informativeness occurring around 250 ms.
It appeared that at this point, a behavioral difference emerged:
during spontaneous dwells, the gaze becomes more mobile to
correct the foveation point, while during intentional dwells,
the gaze freezes in anticipation of feedback.

It is also worth noting that pupil (C1) and vergence (D1)
metrics were not informative.

2) ONLINE PERFORMANCE
Since the classification algorithm utilized probabilistic out-
puts, it is necessary to check their calibration. The reliability
diagram in Fig. 10 indicates that the probability values are
well-calibrated for both the gaze classifier and the context
classifier.

Fig. 11 presents the online performance metrics for both
classifiers and their combination on the second day of
the experiment. A Friedman test with post-hoc Dunn’s
correction for multiple comparisons revealed that combining
the classifiers with adjustable thresholds yielded the best

TABLE 5. Most frequently used features (on day 2).

FIGURE 9. Coefficient of determination (r2) for all features of gaze
classifier (see II.E.3. for description of features A–C) on day 2.

FIGURE 10. Reliability diagram for classifiers over two days. The diagram
was created by averaging the predicted probabilities into 10 bins and
comparing them with the corresponding fractions of positives obtained
from each participant.

results, outperforming the individual performance of each
classifier in terms of the P4w metric (gaze classifier: χ2(3) =

−35, p < 1E−5; contextual classifier: χ2(3) = −35, p <

1E−5), as well as the fixed 0.5 classifier threshold (without
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FIGURE 11. Group average (N = 15) online classifier performance metrics
for Day 2 for gaze (g), context (c) classifiers alone and their combinations
using flat (0.5) and custom thresholds for their average probability.
Asterisks indicate statistical significance for post-hoc Dunn’s test
comparing the combined gaze + context classifiers (g+c) with the gaze
and context classifiers: ∗p < 0.05, ∗∗p < 0.01.

FIGURE 12. Averaged ROC curves (N = 15) for classifiers over two days.
The median value of the data collected from all participants was
calculated for each threshold value, ranging from 0 to 1 in increments of
0.01, using the threshold averaging method.

uncertain classifier decisions: gaze classifier: χ2(3) = −19,
p = 0.04; contextual classifier: χ2(3) = −19, p = 0.04; see
Fig. 11).

When all false positives (FPs) were considered, no pref-
erence was found for the gaze classifier over the combined
classifiers with fixed 0.5 thresholds (χ2(3) = −14, p =

0.28). However, both classifiers performed worse than
the combined classifiers with adjustable thresholds (gaze
classifier: χ2(3) = −30, p = 0.0001; contextual classifier:
χ2(3) = −44, p < 1E−6).

The ROC curves, shown in Fig. 12, demonstrate that the
ROC AUC for the combined classifiers had significantly
higher values compared to both the gaze classifier (χ2(2) =

−21, p = 0.0004) and the contextual classifier (χ2(2) =

−24, p = 0.00004). It is clear that combining the classifiers
provided a significant improvement in accuracy across the
entire range of values.

3) OFFLINE SIMULATIONS
Several offline simulations were conducted to evaluate the
impact of various parameters on classifier performance.
In these simulations, classifier models were trained using data
collected on the first day and tested on data from the second
day to more closely mirror real-world conditions.

FIGURE 13. Group average (N = 15) offline performance metrics for
group and individual classifiers when trained on Day 1 and tested on Day
2. Colors represent training dataset scope: ‘‘group’’ for all participants,
‘‘ind’’ for each individual participant. Asterisks indicate statistical
significance: ∗p < 0.05, ∗ ∗ ∗p < 0.001 (Wilcoxon test).

A comparison of classifiers built on individual and group
data (Fig. 13) revealed that the accuracy of the gaze
classifier remained unchanged, whereas the context classifier
performed better with group data (Wilcoxon test, p <

0.001 for BA, P4 and ROC AUC; p = 0.018 for P4w). This
improvement is likely due to the context classifier using a
relatively higher number of features, which require a larger
dataset for effective training.

Another important parameter of the interface was the gaze
dwell time threshold. To evaluate its impact on classifier
performance, gaze coordinates were reprocessed in offline
simulations using various dwell time thresholds, ranging
from 200 to 700ms. The lowest threshold corresponded to the
typical fixation duration during natural gaze behavior, while
the highest threshold was based on the dwell time threshold
used in the online mode.

Our analysis revealed that higher dwell time thresholds
improved the usefulness of gaze features for classifier
performance. Fig. 14 shows an almost linear increase in
the informativeness of gaze features as the analysis window
lengthens, reaching its peak with a dwell time threshold of
700 ms. This suggests that the later segments of the dwell
contribute more significantly to feature informativeness,
which is defined as the classifiermodel’s ability to distinguish
between intentional and spontaneous dwells.

However, in a more realistic simulation, it is essential
to consider that the proportion of spontaneous dwells
varies significantly depending on the dwell time thresholds.
As dwell duration increases, the number of spontaneous
dwells decreases (Fig. 15, right panel). While the clas-
sifier is designed to reduce false positives (FP), when
the percentage of spontaneous dwells is low, this issue
is largely resolved on its own, rendering the classifier
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FIGURE 14. Group average (N = 15) results of a simulation of feature
window size effect on P4 and P4w metrics. Same trials used for all
feature window size. The shaded areas on the graphs represent the
interquartile range (IQR).

FIGURE 15. Group average (N = 15) offline classification performance
assessed with P4 and P4w metrics as a function of dwell duration (left
panel). Number of spontaneous dwells changes freely with dwell
duration (right panel). The shaded areas on the graphs represent the
interquartile range (IQR).

less useful. Additionally, the classifier introduces false
negatives (FN), and the number of FN errors increases as
the imbalance between spontaneous and intentional dwells
grows.

As shown in Fig. 15, the best P4 score is achieved with a
dwell time threshold of 350–450 ms, where the percentage
of spontaneous dwells is slightly above 50%. Beyond this
point, as the imbalance increases, the P4 score deteriorates.
It’s important to note that the P4 score takes into account all
types of errors, meaning that an increase in FP (at lower dwell
time thresholds) and FN (at higher dwell time thresholds)
negatively impacts the overall score.

Examining the MTBF (Mean Time Between Failures)
metric, it is clear that the classifier enhances performance
by reducing false positives across the simulated range of
dwell durations (Fig. 16). However, the relative improvement
enabled by the classifier over the basic dwell-time based
selection diminished as dwell duration increased, likely due
to the decrease in the number of spontaneous dwells.

FIGURE 16. Group average (N = 15) simulation results for mean time
between failures (MTBF) and its components, TP/FN and TP/FP, as a
function of dwell duration. The shaded areas on the graphs represent the
interquartile range (IQR).

IV. DISCUSSION
In the present study, we demonstrated that machine learning
can improve effectiveness and efficiency of gaze-based
interaction in a context requiring rapid transitions between
visual exploration, decision-making, and making actions.

Such a context was modelled using the EyeLines game,
where new objects entered the game board along the game,
some objects remained at their positions (so memory of these
positions can be exploited by the player), some objects were
removed by the player successful actions, so the visual field
was dynamically changing. This required significant work of
vision and provoked a variety of automatic gaze behaviors,
including those that mimicked gaze dwells intentionally used
by the player to make moves. Moves were basically made
using a relatively short, 500 ms dwell time threshold, which
enabled fluent and engaging interaction but further increased
the rate of false responses due to multiple spontaneous gaze
dwells exceeding the threshold. We therefore considered
EyeLines as a testbed well suited for exploring ML solutions
for the Midas touch problem. In addition, players typically
could freely choose from many options, so the game was also
fit to test the ability of algorithms to deal with the challenges
of free user behavior.

Machine learning (ML) algorithms were employed to
improve the discrimination of intentional and spontaneous
gaze dwells. Participants reported higher gameplay satisfac-
tion with fewer actions required to achieve gameplay goals,
reflecting the success of the proposed solutions in address-
ing the ‘‘Midas touch’’ problem. Notably, the number of
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unintended actionswas reduced by nearly threefold compared
to the baseline gaze-only input, without compromising the
command rate (effective actions per minute, eAPM).

Furthermore, we overcame the challenge of the lack of
ground truth data in online free-behavior experiments by
developing amethodology for approximate offline labeling of
gaze dwells as intentional and spontaneous. This made possi-
ble detailed offline analysis of the classification performance
data from these experiments without limiting participants’
freedom of decision making and, at the same time, without
requiring from them explicit labeling of their intentions or
interface errors. The analysis provided additional insights
which may help to further improve the gaze-based interaction
with a more targeted tuning of the ML-based support.

A. BEHAVIOR AND INTERACTION EFFICIENCY
The results indicate that the ML-enhanced mode (Mode C)
generally allowed participants to interact more efficiently
with the game, as demonstrated by longer game times and
fewer unintended actions compared to the dwell-only mode
(Mode D). Initially, we assumed that efficiency could be
measured using the removal rate metric, since success in
the EyeLines game is determined by the points earned
from removing balls. However, no significant differences in
removal rate were observed between themodes (Fig. 4, right).
It seems that the removal rate is more reflective of a player’s
skill level, as it increases with the number of games played,
particularly on Day 1 (Fig. 5).

Other metrics of efficiency, such as total game time and the
number of actions required to remove a ball (Fig. 6), provide
stronger evidence of Mode C’s advantage. The significant
differences in total game time between the modes suggest
that Mode C enabled players to make more deliberate and
effective moves. This was likely because players felt more
comfortable when searching for the best ball, selected and
moved it, without the fear of incidental events. Indeed,
without a clear vision for the next move, unintentional ball
selection served as a suggestion for the player, who likely
accepted it to avoid spending extra time and having the risk to
get further (likely worse) false selections while searching for
a better target. Consequently, the nearly threefold reduction in
false positives (Wilcoxon test for FP/(FP+TP) in Mode C vs.
Mode D: W(15) = 120.0, p = 0.00006) reduced the number
of actions needed per ball removal while simultaneously
indirectly improved the quality of decisions. Interestingly,
while the reduction of false positives improved higher-level
performance measures, it did not affect the command rate.
The command rate, measured as eAPM (effective actions per
minute), represents the intended ball movements in our game
(move rate, Fig. 4, left). Despite the improvements in other
areas, the eAPM remained unaffected.

A possible reason for this appears when we consider
metrics of time between failures, i.e., MTBF, MTBFw
and their components. Fig. 7 shows that MTBF increased
significantly, most likely due to the reduction of false
positives in Mode C. The small number of false negatives

introduced by the imperfect classifier did not affect the
failure period. However, when failure is interpreted as the
need for additional user action (as estimated by MTBFw),
the impact of false positives is drastically reduced, making
false negatives a more pronounced factor. This equalizes
the MTBFw metrics between C and D modes. From this
perspective, the task’s low sensitivity to FPs was likely the
main reason we did not observe an improvement in eAPM
for Mode C. This suggests that the ‘‘Midas Touch’’ problem
is only worth addressing for tasks where the cost of FPs is
high (which is usually considered in gaze-based interaction
design, starting at least as early as from [8] study). However,
further improvement of our algorithms for the EyeLines-like
tasks could focus on reducing FNs when developing machine
learning models. Another approach could be adjusting both
FP and FN rates for specific tasks and for individual users,
considering task requirements and user experience.

It is important to note that the actual number of false
positives (FPs) that impacted users fell between the total
number of FPs (in the worst case) and FPw (in the best
case). However, it is difficult to determine the exact value.
This is likely a highly individual parameter, influenced by
various factors such as the user’s gaze-control strategy (e.g.,
avoiding looking at objects during screen observation) and
their decision-making speed in this specific task.

Another reason for the low eAPM effects is the nature
of the Lines game, which is a puzzle-type game where a
significant amount of time is spent searching for and planning
each move. However, this combination is quite typical for
real-life tasks, where interaction typically constitutes only a
portion of the total time spent using a computer.

It is worth noting that [12] observed a far greater
improvement in command rates with their machine learning-
enhanced system, likely due to the much higher dwell
time in their no-ML mode. In their study, the baseline
condition required extended dwell times (except for one
oversimplified task), which naturally limited interaction
speed and efficiency, making the improvement in themachine
learning-enhanced mode more pronounced. This contrasts
with our design, where the dwell time in Mode D was
already optimized for quicker selections, resulting in a less
dramatic, but still significant, improvement in Mode C. The
subjective assessments from the questionnaires indicate that
while participants appreciated the speed and efficiency of
the ML-enhanced control mode C, they also reported that it
occasionally interfered with their decision-making process.
This feedback underscores a key tension in gaze-based
interaction design: the trade-off between system automation
and user control. Participants seemed to prefer the enhanced
efficiency of Mode C but were also sensitive to the instances
where the system’s decisions conflicted with their intentions.
Therefore, error awareness possibly played amajor role in the
subjective perception of Mode C, where the machine learning
algorithm filtered out many unintentional selections before
they could affect gameplay. However, participants might not
have been fully aware of these ‘‘prevented errors,’’ as they
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never materialized into noticeable mistakes. In contrast, when
errors did occur in Mode C, they might have been more
noticeable because participants expected the system to be
more accurate. This could make the errors in Mode C seem
more salient, leading to a perceived similarity in error rates
between the two modes.

This finding is consistent with previous studies that have
shown user preference for gaze-sensitive systems that offer
a high degree of control and predictability, even at the cost
of some efficiency [3]. The challenge for future research and
development lies in further refining the systems to better
align with user expectations without sacrificing the benefits
of automation.

B. MACHINE LEARNING
Similar to our previous report [17] on offline classification
of the eye movement data recorded during gaze-based inter-
action, the most useful features for distinguishing between
intentional and spontaneous dwells were the distance from
the center of the dwell to the center of the selected ball,
the spread of gaze coordinates, and the total amplitude
of microsaccades during the dwell. These features became
more effective when calculated over specific segments of the
analysis window, rather than the entire window. Moreover,
increasing the size of the analysis window improved classifier
performance, as longer dwell times allowed for the extraction
of more informative gaze features.

However, the need for a classifier at higher dwell time
thresholds becomes questionable. Based on the collected
data, we were able to simulate performance up to a dwell time
threshold of 700 ms (due to the online dwell time of 500 ms).
Even at this threshold, the proportion of spontaneous dwells
decreased to around 20%, which significantly reduced the
occurrence of false positives, effectively mitigating theMidas
Touch problem on its own. With such a significant class
imbalance, false negatives should become a more serious
issue for users when a classifier is applied. As a result, the
benefits of longer dwell windows—despite their increased
informativeness—are outweighed by diminishing returns in
classifier utility. Nonetheless, in critical applications such as
medical or assistive technologies, extending dwell thresholds
to 700–800 ms may provide a simple and robust alternative
to potentially unreliable machine learning components by
naturally reducing false activations. In contrast, consumer-
oriented interfaces may favor shorter, more responsive dwell
times (400–500 ms), where higher false positive rates can be
effectively controlled through the use of a trained classifier to
maintain fluid interaction.

Features based on pupil and binocular data, which were
not used in the online experiment, were explored in offline
simulations (not included in the Results) but did not improve
classifier performance. This was not unexpected, as pupil
data are very sensitive to many factors that vary in different
directions and may result in a low signal-to-noise ratio for
this feature (see also comments on [16] in Introduction). Eye
vergence (reflected in the binocular features) was shown to

be very sensitive to mind wandering in some tasks [27], but
the engaging nature of our task likely made mind wandering
rare.

In addition to the gaze classifier, a contextual classifier was
employed to enhance interface performance. The features of
the contextual classifier were specifically developed for the
game environment but can be adapted to other gaze-based
interaction tasks by redefining contextual cues relevant to
another interface, for example, object visibility, task-relevant
regions, or timing constraints. Since the classifier architecture
is agnostic to the specific feature set, these contextual
features can be re-derived in other domains without altering
the underlying model or training procedure. Therefore, the
use of task-specific context features does not limit the
generalizability of our results, but rather illustrates how
context-awareness can be flexibly integrated into intention
inference across diverse applications.

In the current study, combining the outputs of both
classifiers by averaging their predicted probabilities yielded
significantly better results compared to using either classifier
alone. The advantage of averaging probabilities likely came
from cases where neither classifier was fully confident in its
prediction. In such cases, the final decision was weighted
toward the classifier with stronger confidence. When both
classifiers were uncertain or predicted opposing classes, the
average probability tended to be close to 0.5, indicating
that the final decision cannot be made with high certainty.
By introducing probability thresholds, we further improved
the algorithm by flagging these uncertain cases and resolving
them through alternative methods, such as applying a higher
dwell time threshold.

In offline simulations, other approaches to combining
classifier models were explored (beyond the scope of this
paper), and the algorithm used here seemed to provide the
best overall performance. The benefit of integrating the
contextual classifier is evident in the ROC curves (Fig. 12),
particularly in the region of lower false positive rates (FPR),
especially on the second day. This indicates that the combined
classifier achieved higher true positive rates (TPR), reducing
false negative (FN) errors while maintaining a lower FPR.
This is particularly important in situations with a relatively
high proportion of spontaneous dwells.

Interestingly, the gaze classifier performed equally well
when trained on group data compared to individual data,
and the contextual classifier performed even better with
group data. These findings are significant because they
suggest that individual datasets are not necessary for training
unique classifier models, simplifying the application of ML
approaches to gaze-based interactions.

However, it is important to maintain consistency between
the tasks in the training dataset and the tasks in the online
mode where the classifier will be applied. As seen in the
reliability diagram from the first day (Fig. 10), the contextual
classifier performed poorly, resulting in a highly asymmetric
ROC curve relative to the left diagonal (Fig. 12). This
issue likely arose because the training dataset was collected
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from a slightly different game environment in our previous
study.

C. VIEWING GAZE ‘‘OUTPUT’’ AS A SOCIAL FUNCTION
For future development of the ML-based enhancement of
gaze-based interaction, it could be fruitful to learnmore about
the natural basis of human’s ability to direct and hold their
gaze intentionally. The origin of the ability to intentionally
control the gaze direction possibly lies in social interaction.
Gaze direction can be approximately estimated without any
tools, just by visual observation, so it is natural that humans
are not only aware of it but also can actively control it to
hide the focus of their attention. Moreover, gaze is used to
communicate attention (as in joint attention, [28], [29], [30])
and other social signals (e.g., direct gaze, [31], [32], [33]).
The Midas touch problem is minor in most scenarios

of social interaction, where gaze is only rarely used and
where its use is highly automatized. It does not seem to be
severe in gaze typing, where gaze-sensitive area is limited
to a keyboard: due to its fixed visual appearance the user
does not need to use vision extensively while looking at it.
However, spaces where vision and control should be used
cannot be easily separated in many scenarios of human-
machine interaction, e.g., web browsing, robot control,
gaming. In such cases, solving the Midas touch problem
is mandatory for effective and efficient gaze-based control.
Fortunately, we may expect a difference in gaze features
between gaze use for ‘‘input’’ and ‘‘output’’ in all such cases,
so ML-based approaches could provide a solution.

D. COMBINATION WITH XR AND BCIS
In recent years, increasing attention has been attracted to
gaze-based interaction for extended reality (XR), which
encompasses virtual, augmented and mixed reality technolo-
gies (VR/AR/MR). For XR, input technologies developed for
computers and smartphones are not well suited; dedicated
XR controllers need to be carried in hands, and the use of
gestures and voice is inconvenient in crowded environments,
while input by gaze is free from such limitations [34].
XR helmets and glasses also provide a convenient platform
for capturing and processing gaze data needed for gaze-based
input. Release of a commercial Apple Vision Pro XR headset
has demonstrated the feasibility and practical prospects
of gaze-based selection in such an environment [35].
However, existing solutions still require using confirmatory
hand gestures together with gaze-based control. On-the-fly
recognition of the user intention based on gaze features,
without confirmatory gestures, could significantly advance
this technology.

Interestingly, first attempts to enhance gaze-based control
with ML were undertaken using features extracted not from
gaze data but from brain activity data [19], [20], [21], [22],
[36], [37]. They were based on the idea of passive brain-
computer interfaces (BCIs), which recognize patterns of brain
activity without requiring the user to do anything specific to

trigger these patterns [11]. The use of brain data in such ‘‘eye-
brain-computer interfaces’’ (EBCIs) hasmany disadvantages,
such as the need for additional equipment. However, dry EEG
elctrodes can be easily placed within an XR helmet, which
would help to make the combined technologymore appealing
to the users. One study already demonstrated recognition
of gaze dwells used for control within an XR helmet [20].
It should be noted that most of such EBCI studies were
run offline, while the only online test of this technology
showed unsatisfactory performance, rising questions about
possibly insufficient specificity of the brain markers used in
these studies [23]. Nevertheless, the EBCI technology may
become more effective when combined with the recognition
of user’s intent based on gaze features. Recently described
new brain markers of the intentional gaze use during gaze-
based interaction [38]may appearmore specific to intentional
dwelling and may provide additional opportunities for the
development of such combined technologies.

E. LIMITATIONS AND FUTURE WORK
This study, while providing valuable insights into gaze-based
interaction using the EyeLines game, is subject to several
limitations that should be acknowledged.

1) SINGLE TASK FOCUS
The research concentrated exclusively on the EyeLines game
as the model task. While this approach allowed for in-
depth analysis, it also limits the generalizability of the
findings. The performance and effectiveness of the proposed
gaze-based interaction techniques may vary across different
applications and user groups. Evidently, a broader range of
tasks and environments should be explored to validate the
generalizability of the approaches developed in the current
study.

2) SMALL SAMPLE SIZE
The study involved a relatively small sample of participants,
which may have constrained the robustness of the machine
learning classifiers used. A larger sample size would likely
provide more diverse data, enhancing the generalizability
and reliability of the results. Higher volumes of data would
also likely result in better classifier training. Moreover, only
healthy young participants were involved in our study. For
developing a practical technology, different groups of end
users should be involved in testing; specific characteristics
of their eye movements and their specific needs should be
addressed in further algorithm development and parameter
tuning.

3) NO SINGLE CLASSIFIER CONDITIONS IN THE ONLINE
STUDY
Due to time constraints, we studied in the online tests
only a combination of the gaze and contextual classifiers.
This approach provided a better approximation of possible
use cases, where both types of classifiers should be used
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whenever possible but made possible only approximate
estimation of the contribution of each of them in the offline
study. Nevertheless, this circumstance does not affect the
main conclusions from this study. In the future, specific
results can be estimated more accurately in tests where each
classifier is applied alone.

4) LABEL NOISE
Our approximate ground-truth labeling method may intro-
duce residual misclassifications, potentially biasing classifier
training and inflating performance errors (e.g., balanced
accuracy, P4). Although we mitigated this by excluding
ambiguous events and balancing class distributions, future
studies could employ external validation or participant self-
reporting methods to improve the accuracy of intention
annotations. Such enhancements may be particularly bene-
ficial for participants exhibiting atypical interaction patterns.

5) SIMPLE DWELL-TIME ALGORITHM AS THE BASELINE
As we mentioned in the Introduction, many solutions to the
Midas touch problemwere proposed. A comprehensive test of
a new solution should, of course, include at least a comparison
with some of the best of them. In this work, we only compared
the ML-enhanced intention detection with (1) the detection
based on the most basic dwell time criterion and with (2)
selection confirmation using an additional gaze dwell; in the
second case, the data were taken from our previous study.
However, for most of the existing solutions, it is evident
that they would lead to significantly slower operation and
could not be serious competitors. Other approaches could
be combined with ML-based enhancement, resulting in even
better performance.

6) USE OF A HIGH-GRADE EYE TRACKER
In this study, we used the high-precision EyeLink 1000 Plus
eye tracker with a 1000 Hz sampling rate and head stabiliza-
tion via chinrest. This setup enabled accurate analysis of eye
movement data but limited the practicality of the setup for
real-world gaze-based interaction. Most of the features we
employed appear to be computable from data collected using
more affordable and portable/wearable eye trackers, though
this assumption requires further validation in future studies.

7) ABSENCE OF COMPLEX, ADAPTIVE CLASSIFIERS
The study did not employ advanced machine learning
methods, such as neural networks, which are capable of
adaptive learning and handling more complex data patterns.
The use of simpler classifiers, while effective in this context,
may not fully capture the intricacies of gaze behavior in more
dynamic or varied environments [12]. Future work could
explore the potential benefits of incorporating such advanced
techniques to improve the adaptability and accuracy of gaze-
based interaction systems.

We believe that these limitations do not undermine the
significance of the current study but rather highlight areas
for future research. Expanding the task scope, increasing

the sample size, and exploring more sophisticated machine
learning techniques could further enhance the applicability
and impact of gaze-based interaction systems.

V. CONCLUSION
In this study, we explored the effectiveness of ML-enhanced
gaze-based interaction within a high-paced gaming environ-
ment. Our approach combined traditional gaze dwell time
with a machine learning algorithm designed to differentiate
between intentional and spontaneous gaze actions. The
results demonstrated a significant reduction in unintended
actions and enhanced overall gameplay efficiency, without
negatively impacting the command rate. Participants reported
improved user experience and satisfaction, indicating the
potential of this approach for more intuitive and ergonomic
gaze-based interfaces.

The research gaze-controlled game used in this study, the
EyeLines, proved to be an effective model for investigating
the challenges of mixed gaze use for both interaction and
vision, offering valuable insights into the practical application
of gaze-based controls in real-time scenarios. Our findings
contribute to the broader discussion on overcoming theMidas
touch problem, a common challenge in gaze-based systems,
by showing that machine learning can play a crucial role in
refining the accuracy and usability of these interfaces.
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